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Synthetic strategies to produce nanosized metal complexes often
employ large macrocyclic ligands with the ability to coordinate to
several metal ions.1 L. K. Thompson and co-workers reported octa-
and dodecacopper(II) complexes1a which consist ofµ3-oxo-bridged
subunits each containing a tetra- or hexanucleating macrocyclic
ligand. Calixarenes with heteroatoms on the rims and in the body
are excellent candidates as ligands for making multinuclear metal
complexes.2-6 Recently, we reported several complexes having
p-tert-butylthia-,3 p-tert-butylsulfinyl-,5 andp-tert-butylsulfonylcalix-
[4]arenes6 (X ) S, SO, and SO2, respectively;n ) 4) as multidentate
ligands coordinated to first- and second-row transition metal ion-
(s).

Under appropriate conditions, the calix[4]arene derivatives can
act as a building unit to form multinuclear complexes.5 A larger
calixarene such asp-tert-butylthiacalix[6]arene (X) S; n ) 6;
H6L )7 can act as a large macrocyclic ligand to which several metal
ions can be bound via oxygen and sulfur atoms to form a phenoxy-
bridged cluster-core. Thus, H6-nLn- can be used as a building unit
to produce metal-containing nanostructures. In this communication,
we describe a novel decacopper(II) cluster complex supported by
two L6- and other supporting ligands (O2-, OH-, and AcO-).

Reaction of Cu(AcO)2 and H6L in CH2Cl2/MeCN, followed by
recrystallization from CHCl3/dmf, gave deep red crystals of [Cu10-
(L )2(µ3-O)2(µ3-OH)3(µ-AcO)]‚8dmf‚6H2O. Figure 1 shows the
structure of the complex.8,9 The complex has a crystallographic two-
fold axis which divides the complex into two pentacopper(II) units.
In the complex,L6- takes a “pinched-cone” conformation (Chart
1) having a pocketlike structure where four phenoxy oxygens (O1,
O3, O4, and O6) are in a square-planar arrangement.

Figure 2 shows the structure of the decacopper(II) core. Cu1 is
located in the center of the oxygen square with bond lengths
between 1.941(2)-2.0154(19) Å. Five copper(II) ions (Figure 2,
drawn with filled bonds) are included in the pocket, forming a
square pyramid. The four basal coppers (Cu2-Cu5) are placed
above the phenoxy oxygens with standard Cu-O distances of
1.9660(19) and 2.0125(18) Å for Cu2 and Cu5 and with longer
distances of 2.208(2) and 2.276(2) Å for Cu3 and Cu4, respectively.

O2 and O5 connect two pairs of copper(II) ions (Cu2/Cu3 and Cu4/
Cu5, respectively) in the basal plane with bond lengths of 1.942-
(2)-2.001(2) Å. The four basal coppers are further connected by
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Figure 1. Crystal structure of the decacopper(II) complex.

Figure 2. Decacopper(II) core structure with thermal ellipsoids at 40%
probability for Cu atoms. Primed atoms were generated using the symmetry
transformation-x + 1, y, -z + 1/2.
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hydroxo (O7), oxo (O8), and acetate groups(O9 and O10).8 Around
the crystallographic two-fold axis, the two pentacopper(II) units
are connected via O7 and O8 to form decacopper(II) core. Each
copper(II) atom is further coordinated by a sulfur atom fromL6-

(Figure 3), and all copper atoms are regarded as being in a distorted
square-pyramidal environment with the basal planes including O4

donor sets for Cu1, Cu2, and Cu5 (Figure 2), and O3S donor sets
for Cu3 and Cu4.

The ESI mass spectrum of an acidic EtOH solution of the
complex shows a clear signal corresponding to [Cu10(L )2(O)(OH)4-
(AcO)(H2O)]+ (m/z ) 2946.79) showing that the decacopper(II)
core structure remains intact in solution.

The magnetic behavior of the decacopper(II) core is shown in
Figure 4 as aøMT versusT plot.

TheøMT value at 300 K, 3.73 emu K mol-1, is compatible with
the spin only value for the dilute 10 magnetic centers (S ) 1/2)
with a g value of 2.00, which is nearly constant down to 50 K.
Below 50 K,øMT increases rapidly to reach a maximum value of
7.04 emu K mol-1 at 4 K, suggesting a ferromagnetically coupled
behavior in the core. The magnitude of the interaction was estimated
asθ ) 7.9(2) K on the basis of the Curie-Weiss model (Figure 4,
inset). Simulation of the temperature dependence oføMT was not
performed due to the complexity of the structure. However, some
ferromagnetic pathways can be found in the decacopper(II) core.
As mentioned above, all copper(II) ions are in a distorted square-

pyramidal coordination environment, and each magnetic orbital
(dx2-y2) lies in the basal plane. The dihedral angles between basal
planes for Cu1/Cu2, Cu1/Cu5, Cu2/Cu3, Cu2/Cu5, and Cu4/Cu5
are estimated as 85.78(9)°, 85.65(9)°, 80.28(12)°, 89.09(7)°, and
77.08(12)°, respectively. Furthermore, Cu2 and Cu2′ are connected
by di-µ-hydroxo bridges with a bridging angle of 96.84(12)°. All
these structural features are advantageous for orthogonality between
adjoining magnetic orbitals.10 Although there are some possible
antiferromagnetic pathways in the core, overall magnetic behavior
of the complex turns out to be ferromagnetic.

In this study, we have successfully used thiacalix[6]arene to
produce a ferromagnetically coupled copper(II) decamer. Because
this macrocyclic ligand has a large number of donor atoms that
can bind up to five metal atoms in the pinched-cone conformation,
it is an excellent tool for making nanocomplexes.
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Figure 3. ORTEP diagram of one pentacopper(II) unit with thermal
ellipsoids at 40% probability.tert-Butyl groups and hydrogen atoms are
omitted.

Figure 4. Temperature dependence oføMT and øM
-1 (inset) for the

decacopper(II) complex. The solid line corresponds to the best fit based on
the Curie-Weiss expression.
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